

Assessment of the 4th Round of Reporting on the Implementation of PARCOM Recommendation 91/4 on Radioactive Discharges

OSPAR Convention

The Convention for the Protection of the Marine Environment of the North-East Atlantic (the "OSPAR Convention") was opened for signature at the Ministerial Meeting of the former Oslo and Paris Commissions in Paris on 22 September 1992. The Convention entered into force on 25 March 1998. It has been ratified by Belgium, Denmark, Finland, France, Germany, Iceland, Ireland, Luxembourg, Netherlands, Norway, Portugal, Sweden, Switzerland and the United Kingdom and approved by the European Community and Spain.

Convention OSPAR

La Convention pour la protection du milieu marin de l'Atlantique du Nord-Est, dite Convention OSPAR, a été ouverte à la signature à la réunion ministérielle des anciennes Commissions d'Oslo et de Paris, à Paris le 22 septembre 1992. La Convention est entrée en vigueur le 25 mars 1998. La Convention a été ratifiée par l'Allemagne, la Belgique, le Danemark, la Finlande, la France, l'Irlande, l'Islande, le Luxembourg, la Norvège, les Pays-Bas, le Portugal, le Royaume-Uni de Grande Bretagne et d'Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l'Espagne.

Contents

1	Introduction	5
1.1 1.2 1.3	Background Objectives and Approach Structure of this report	5 6 7
2	Compliance with Reporting Requirements and Guidelines	8
2.1 2.2	The Guidelines Compliance with the Guidelines	8 8
3	Effectiveness of Implementation of BAT	11
3.1	National Arrangements for Implementation of BAT	11
3.1.1	Belgium	11
3.1.2	Denmark	11
3.1.3	France	11
3.1.4	Germany	12
3.1.5	The Netherlands	12
3.1.6	Norway	12
3.1.7	Portugal	12
3.1.8	Spain	12
3.1.9	Sweden	13
3.1.10	Switzerland	13
3.1.11	United Kingdom	13
3.2	Systems and Abatement Techniques to Reduce Discharge	13
3.2.1	Systems and Abatement Techniques in place in Contracting Partie	es13
3.2.2 3.3	Contracting Parties' Systems Abatement Techniques and BAT The Effectiveness of BAT in reducing Liquid Discharges	16 18
3.3.1	Belgium	18
3.3.2	Denmark	18
3.3.3	France	18
3.3.4	Germany	18
3.3.5	The Netherlands	18
3.3.6	Norway	19
3.3.7	Portugal	19
3.3.8	Spain	19
3.3.9	Sweden	19
3.3.10	Switzerland	19
3.3.11	United Kingdom	19
4	Conclusions and Recommendations	20
4.1	Conclusions	20
4.2	Recommendations for next round of reporting	21
5	References	23
6	Annexes	24

Executive Summary

This report confirms that the OSPAR Contracting Parties' commitment to use 'Best Available Technology' (BAT), to 'minimize and, as appropriate, eliminate 'radioactive pollution from nuclear industries, has been successfully translated into both the legal and operational systems used to regulate radioactive discharges from the most significant nuclear industries in the OSPAR region. There have also been indications of a general downward trend in radioactive discharges, which suggests that the objective of this commitment is being met.

This report provides an overview of an assessment of the 4th round of reporting on the implementation of PARCOM Recommendation 91/4 on radioactive discharges, that contains the above mentioned commitment on the application of BAT. The objective was to review information provided in the Contracting Parties' reports on the implementation of this recommendation in order to:

- assess the effectiveness of the implementation of BAT in nuclear facilities by each Contracting Party and overall;
- conclude on Contracting Parties' implementation, including identification of abatement techniques adopted and consideration of whether these constitute BAT;
- assess the effectiveness of measures taken to implement BAT and to make recommendations for the next reporting round.

The focus of this report was on consideration of BAT; information on discharge trends was derived from a previous OSPAR Commission report¹.

From information provided, it was possible to conclude that, in general:

- BAT is implemented in Contracting Parties' national legislation and regulations;
- operational management systems are in place to prevent, eliminate or reduce liquid waste;
- the abatement techniques applied for liquid effluent are consistent with international reports on best practice; and,
- there have been reductions in radioactive discharges and some evidence that reductions arise from actions taken to reduce discharges rather than differences in throughput.

Detailed recommendations to enhance the value of the next round of reporting were provided, including:

- further development of the reporting Guidelines and associated BAT performance indicators to facilitate their consistent use and encourage information exchange on: BAT documentation and decision-making; the use of environmental targets, and on specific radionuclides, e.g. tritum and C-14;
- consideration of the way in which aerial emissions in general and discharges from decommissioning operations in particular should be considered.

¹ First Periodic Evaluation of Progress towards the Objective of the OSPAR Radioactive Substances Strategy (OSPAR, 2006)

1 Introduction

1.1 Background

In PARCOM Recommendation 91/4 on Radioactive Discharges, the Contracting Parties to the Paris Convention agreed

"To respect the relevant Recommendations of international organizations and to apply the Best Available Technology to minimize and, as appropriate, eliminate any pollution caused by radioactive discharge from all nuclear industries, including research reactors and reprocessing plants, into the marine environment."

Furthermore, Contracting Parties agreed to present a statement on progress made in applying such technology every four years.

The OSPAR Commission published a report on the implementation of PARCOM Recommendation 91/4 on Radioactive Discharges in 2003, which provided a summary of the 3rd round of reporting (OSPAR, 2003a). This report concluded that the criteria necessary to establish Best Available Technology (BAT) were, to some extent, missing, although the use of BAT/BEP indicators marked substantial progress towards allowing a balanced evaluation to be made. To support this process, revised Guidelines for the Submission of Information about, and Assessment of, the Application of BAT in Nuclear Facilities were developed (OSPAR, 2004); a copy of these guidelines is provided as Annex 1.

This report provides an assessment of the 4th round of reporting on the implementation of PARCOM Recommendation 91/4, including comparison with the revised guidelines (2004-03). The following Contracting Parties reported during this round; slight differences in the reporting period arise from the annual rotation of reporting at successive meetings of the Radioactive Substances Committee (RSC).

	Reporting period		Reporting period
Belgium	1998 - 2005	Portugal ²	
Denmark ¹		Spain	1998 - 2003
France	1999 - 2004	Sweden	1998 - 2003
Germany	1999 - 2004	Switzerland	1999 - 2004
The Netherlands	1998 - 2003	United Kingdom	1998 - 2003
Norway	1999 - 2004		

Table 1: Contracting Parties Reporting in 4th Round and Reporting Periods

More detailed information may be obtained from the national implementation reports referenced in Annex 2, which are generally available from the OSPAR website¹. These reports include *inter alia* general information regarding national arrangements for the implementation of BAT and site-specific details of radioactive waste management processes, abatement technologies, discharge and environmental monitoring information and data.

² It was agreed that the reports from Denmark and Portugal be included in this assessment, although representatives of these Contracting Parties were not in attendance at the Radioactive Substances Committee meeting to present them. These reports therefore do not appear on the OSPAR website.

The OSPAR Radioactive Substances Strategy (OSPAR, 2003b), as amended at the second Ministerial meeting of the OSPAR Commission in 2003, provides that:

"...the objective of the Commission with regard to radioactive substances, including waste, is to prevent pollution of the maritime area from ionizing radiation through progressive and substantial reductions of discharges, emissions and losses of radioactive substances, with the ultimate aim of concentrations in the environment near background levels for naturally occurring radioactive substances and close to zero for artificial radioactive substances. In achieving this objective, the following issues should, inter alia, be taken into account:

- Legitimate uses of the sea;
- Technical feasibility;
- Radiological impacts on man and biota."

The First Periodic Evaluation of Progress towards the Objective of the OSPAR Radioactive Substances Strategy was published in 2006 (OSPAR, 2006). This includes a detailed statistical analysis of the discharge trends for each Contracting Party for each industry sector; this information also has relevance to this report, as outlined below.

1.2 Objectives and Approach

The objectives and approach for this assessment were primarily based on recommendations developed during the Radioactive Substances Committee meeting 2008 (RSC 2008). The objectives were to:

- assess the effectiveness of the implementation of BAT in nuclear facilities by each Contracting Party and overall (with focus on BAT);
- conclude on Contracting Parties' implementation, including identification of abatement techniques adopted and consideration of whether these constitute BAT;
- assess the effectiveness of measures taken to implement BAT and to make recommendations for the next implementation reporting round.

Within the time and resources available to undertake this assessment, it was agreed that the focus should be on a consideration of the implementation of BAT, rather than a detailed consideration of discharge trends, or environmental monitoring information and data.

Information relating to:

- national procedures for the implementation of BAT; and
- radioactive discharges and waste management processes and abatement techniques;

used by individual Contracting Parties has been gathered from a review of both a compilation of national reports on PARCOM 91/4, provided by the OSPAR Secretariat, and the individual implementation reports (listed in Annex 2).

Information regarding discharge trends has been obtained solely from the information presented in the First Periodic Evaluation of Progress towards the Objective of the OSPAR Radioactive Substances Strategy (OSPAR, 2006).

1.3 Structure of this report

Following this introduction, Section 2 provides a discussion of Contracting Parties' compliance with reporting requirements and guidelines. Section 3 deals with the effectiveness of Contracting Parties' implementation of BAT, taking account of national arrangements, systems and abatement technologies in place and their effectiveness in delivering reductions in discharges. Conclusions and recommendations for future reporting are provided in Section 4. There are three annexes: Annex 1 is the Guidelines for the Submission of Information about, and Assessment of, the Application of BAT in Nuclear Facilities; Annex 2 is a list of national implementation reports submitted in the 4th round of reporting; and Annex 3 is a summary of site-specific information on systems and abatement techniques in use at the Contracting Parties' nuclear facilities.

2 Compliance with Reporting Requirements and Guidelines

2.1 The Guidelines

The Guidelines for Submission of Information about, and the Assessment of, he Application of BAT in Nuclear Facilities (herein after "the Guidelines") are provided as Annex 1. Some of the key requirements are summarised here for ease of reference.

General information regarding the implementation of BAT in national legislation or regulation is required, with a focus on new legislation in place since the previous round of reporting. In addition, specific information regarding each nuclear facility is also requested including: systems in place to reduce, prevent or eliminate discharges of radioactive substances to the marine environment and the nature and efficiency of abatement systems. These requirements are supported by Appendix I of the Guidelines, which includes a template for recording the management and abatement systems in place. Information on liquid discharges; emissions to air of concern for the marine environment; environmental monitoring programmes and concentrations in water, sediment and fish and dose assessment information, are also required. A number of BAT/BEP indicators are identified related to:

- systems in place to reduce, prevent or eliminate discharges of radioactive substances;
- decontamination or abatement factors or other measures of the efficiency of abatement systems;
- downward trends in discharges, environmental concentrations and critical group doses;
- relevance of the environmental monitoring programme and target values.

This report takes account of the first three indicators, with a focus on the first two. A detailed consideration of the relevance of the established environmental monitoring programmes and targets was beyond the scope of this review.

2.2 Compliance with the Guidelines

The Contracting Parties that have a nuclear industry submitted implementation reports (listed in Annex 2).

Information was generally presented within the overall format of the Guidelines. However, as in the previous round of reporting, not all of the Contracting Parties submitted all of the information requested. A brief summary of the content of the national implementation reports, in comparison to key headings in the Guidelines is provided in Table 2. A more detailed interpretation of the information referred to in the first three columns (the focus of this report) is provided in Section 3.

Table 2 demonstrates that the reports from Denmark and Portugal would need significant modification to comply with the Guidelines.

The reports provided by individual Contracting Parties have different strengths. For example, the reports by France, Spain and Sweden make use of the Appendix I format to provide detailed information on the characteristics of abatement techniques, and France and Sweden refer explicitly to the BAT/BEP indicators. The UK report provides detailed information on the review of decision-making related to the choice of abatement technologies for some sites, and the report from Germany makes reference to national documentation on BAT that may provide a useful basis for future review.

Table	2:	Summary	of	Information	included	in	Contracting	Parties'	Implementation
Repor	ts r	elated to G	uide	eline Heading	IS				

Contracting Party	General		Disch	arges		Environmental		Radiation Doses	
	Implementation in legislation ¹	Systems to reduce discharges	Efficiency of abatement systems ²	Comparisons (trends & international)	Trends in aerial emissions ³	Monitoring programmes	Environmental concentrations	Critical group doses	Targets
Belgium	(✓)	✓		✓	~	~	\checkmark	~	
Denmark	(✓)								
France	~	~	✓	✓		✓	✓	~	
Germany	~	✓	(✓)	✓	~	✓		~	
Netherlands	(~)	✓	(✓)	✓	~	✓	~	~	~
Norway	(*)	✓		✓		✓	~	~	~
Portugal							~	~	
Spain	~	~	✓	✓		✓	~	~	
Sweden	✓	✓	✓	✓	✓	✓	~	~	~
Switzerland	(✓)	~	~	~		~	~	~	~
UK	~	~	(✓)	~	✓	~	~	~	~

 (\checkmark) in this column indicates that information is incomplete, as explained in more detail in Section 4.1. (\checkmark) in this column indicates that information on the efficiency of abatement systems is incomplete, as

demonstrated in Section 3 and Annex 3.

³ In some cases this information was not provided as it was not considered relevant to the marine environment.

This information is in accordance with the conclusions of the Radioactive Substances Committee, outlined in Summary Records of their meetings, and given below.

Following presentation of the national implementation reports, the RSC agreed, subject to the reservation of Ireland³, that with respect to the implementation of PARCOM Recommendation 91/4:

- Contracting Parties had fulfilled the reporting requirements⁴;
- The reports were in line with the Guidelines ;
- The information presented included indications that BAT had been applied in the nuclear installations of the Contracting Parties.

³ The application of BAT was one of the matters in dispute between Ireland and the UK in the context of the MOX Plant case before the UNCLOS Annex VII Tribunal. In the circumstances, Ireland did not believe it would be appropriate to state its views on the reports presented with regard to the application of BAT.

⁴ Two Contracting Parties (Denmark and Portugal) did not attend the RSC to present their reports; the RSC was therefore not in a position to make a decision on these reports but it was agreed that these reports should be taken into account in this assessment report.

3 Effectiveness of Implementation of BAT

As outlined in Section 1.2, there are three key elements involved in this assessment of the effectiveness of the implementation of BAT:

- National arrangements for the implementation of BAT;
- The systems and abatement technologies in place and the extent to which they may be considered to constitute BAT;
- The effectiveness of these arrangements and techniques in delivering reductions in discharges.

Each of these issues is considered in turn in the following sections.

3.1 National Arrangements for Implementation of BAT

The Guidelines require national implementation reports to include general information on the implementation of BAT in national legislation and regulation. This information was reviewed. Some general conclusions are provided for each Contracting Party. However, it should be noted that the Guidelines suggest that the focus of the implementation reports should be on legislation introduced since the previous round of reporting. The level of detail provided, and conclusions arising, may therefore be influenced by differing interpretations of this requirement and focus.

3.1.1 Belgium

The Royal Decree of 20 July 2001 (General Regulations for the Protection of the population, workers and the environment against the dangers of Ionising Radiation - GRPIR) implements European Directives and the recommendations of ICRP Publication 60, and thus will include the requirement for optimisation of protection. However, the way in which this legislation addresses optimisation of protection and the application of BAT is not specified.

3.1.2 Denmark

Danish legislation and regulations are based on international principles of radiation protection and derived from Euratom Directives. However, no specific information is provided on the way in which the principles of optimisation or BAT are implemented within these requirements.

3.1.3 France

The French Nuclear Safety Authority has established new regulatory provisions to cover modifications of discharge authorisations and requirements for technical improvements from the operator. Authorised limits are set to be as low as technically and economically possible, and require the operator continuously to optimise treatment and waste processes by using the best available techniques at an acceptable cost. Furthermore, the French authorities are currently analysing a study of processes and effluent treatment measures to reduce liquid radioactive discharges from COGEMA - La Hague that they have requested. The information provided in the summary information available in English suggests that technical advances in effluent treatment methods and approaches have been reviewed and

may lead to improvements which would be presented in the next round of implementation of PARCOM 91.

3.1.4 Germany

German policy is based on international conventions and recommendations. Existing legislation provides for:

- avoidance of unnecessary radiation exposure to the public,
- avoidance of unnecessary contamination of humans and the environment, and
- minimisation of radiation exposure and contaminations taking into account the state of scientific and technological advancement.

In addition, the state of scientific and technological advancement, taking into account the BAT, is defined in technical guidelines, such as safety standards, issued by the "Kerntechnischer Ausschuß (KTA)". Additional regulations are issued by the "Deutsches Institut für Normung (DIN)" containing requirements affecting the treatment of radioactive effluents, including retention factors for filter systems. The safety standards issued by the KTA and the DIN are reviewed on a regular basis every five years. Thus, the processes for establishing and reviewing BAT appear to be well established.

3.1.5 The Netherlands

The Nuclear Energy Act incorporates the three principles of radiological protection. The terms BAT/BEP are not explicitly referred to in the Nuclear Energy Act, although BAT/BEP are considered to be implemented in the Dutch national regulation by the application of the optimisation (or ALARA) principle. Information is not, however, provided on the approach applied to review and apply national and. international developments in technology or practices.

3.1.6 Norway

Norwegian policy is based on internationally accepted principles for radiation protection. Discharge authorisations explicitly require the use of Best Available Techniques (BAT). When issuing authorisations for nuclear installations, Norwegian practice is to focus on BAT, the ALARA and precautionary principles. No detailed information is, however, provided.

3.1.7 Portugal

No information provided.

3.1.8 Spain

Spanish legislation and regulations require that facilities generating radioactive wastes must be provided with adequate treatment and removal systems and that every reasonable effort is made, from the generation of wastes to the operation of the effluent treatment systems, to reduce releases and to keep the radiological impact as low as is technically and economically feasible. A Continuous Safety Assessment Programme (CSA) is required that takes account of progress in technology (BAT) and the operational experience. Licensees are also required to perform a Periodic Safety Review (PSR) programme on a ten yearly basis to *inter alia* evaluate the applicability to the facility of developments in new generation plants. Thus, the processes for establishing and reviewing BAT appear to be well established.

3.1.9 Sweden

The primary legislation, the Radiation Protection Act, includes a requirement that radiation protection shall be in reasonable accordance with technical and methodological development, and shall be improved as technological and methodological development permits (i.e. that BAT shall be applied although the term is not used *per se*). Other relevant codes and regulations explicitly identify BAT as a means for achieving the goal of preventing, eliminating or reducing the impact on health and the environment of human activities, and target levels are established that are considered to relate to BAT. Thus, the processes for establishing and reviewing BAT appear to be well established.

3.1.10 Switzerland

The Swiss Federal Act and Ordinance on Radiological Protection has been based on the recommendations of the ICRP Publication 60. In addition, the Swiss Federal Nuclear Safety Inspectorate's regulatory guidelines include the BAT/BEP requirement, according to the terms of the OSPAR Convention. More detailed information on the way in which this requirement is implemented is not provided.

3.1.11 United Kingdom

The regulation of radioactive waste discharges and disposals in the UK is governed by two optimisation concepts: Best Practicable Environmental Option (BPEO) and Best Practicable Means (BPM). The BPEO is about global optimisation, with respect to environmental impact, while BPM focuses on processes and individual waste streams. In practice, the common regulatory understanding in the UK is that if an identified BPEO is put into effect using BPM, an operator can confidently claim that BAT has been applied. Together, these concepts, and the way in which they are incorporated within the process of regular authorisation review, place a continuous pressure for improvement on operators which is consistent with the objectives of BAT. Thus, the processes for establishing and reviewing BAT appear to be well established.

3.2 Systems and Abatement Techniques to Reduce Discharge

The Guidelines require site-specific information on systems and abatement techniques in place to reduce, prevent or eliminate discharges of radioactive substances to the marine environment (2.1 and 2.2 and Appendix I of the Guidelines). Appendix I of the Guidelines includes a list of abatement techniques from the OECD/NEA report on Effluent Release Options from Nuclear Installations (OECD, 2003), as follows:

Delay tanks

Chemical precipitation

- Cross-flow filtration
- Ion exchange
- Osmosis
- Ultrafiltration

- Centrifuging
- Hydrocylone
- 3.2.1 Systems and Abatement Techniques in place in Contracting Parties

A compilation of the site-specific information on systems and abatement techniques, included in the Contracting Parties' implementation reports (listed in Annex 2) is provided in Annex 3. A summary is provided in Table 3 and in the discussion that follows. It should be noted, however, that the identification of BAT,

at a site-specific and process level, is a complex task which is beyond the scope of this assessment. This is a high level review of the systems and abatement techniques, to determine whether they are appropriate and generally in line with industry best practice – and by extension likely to be consistent with BAT.

Table 3: Systems and Abatemen	t Techniques in Place in	Contracting Parties	(see Annex 3)
--------------------------------------	--------------------------	----------------------------	---------------

	Fuel Enrichment	Nuclear Power	Reprocessing	Research and
	and Fabrication	Decommissioning		Development
Belgium	Not applicable	Segregation. Filtration of low active effluents. lon- exchange and evaporation. Decay storage.	Not applicable	Segregation, sedimentation and evaporation. Cementation of residues and bitumenisation
Denmark		No informa	l	belore storage.
France	Not applicable ⁵	Minimization at source, filtration, evaporation and demineralisation.	Continuous review of developments regarding evaporation, concentration and vitrification. Chemical treatment.	No information
Germany	No discharge water from fabrication plant. At the enrichment plant dry conversion processes used. Minimization of waste by design and process. Filtration and evaporation.	Minimization and segregation, filtration, evaporation, ion-exchange and centrifugal systems. Representative decontamination factors provided.	Not applicable	Delay storage, ion- exchange and evaporation processes for higher concentrations. Representative decontamination factors provided.
The Netherlands	Distillation, precipitation or sedimentation followed by filtration and deposition. Recovered uranium is reused. Delay storage for short- lived nuclides.	Minimization of waste, ion- exchange. Storage and further distillation and filtration of sludge. Decontamination factors are provided.	Not applicable	Minimization, distillation and decay storage. Segregation and sedimentation, flocculation and pH adjustment, membrane filtration, centrifugation and drying.

⁵ No plants located in the OSPAR area.

	Fuel Enrichment and Fabrication	Nuclear Power Generation and Decommissioning	Reprocessing	Research and Development
Norway	Not applicable	Not applicable	Not applicable	Delay storage, sedimentation, filtration and purification by ion exchange and evaporation.
Portugal		No informa	ation	
Spain	Centrifugation filtration and delay.	Minimization of waste. Delay, filters, evaporators. Demineralization and filtration. Detailed site- specific information on effectiveness of different treatment techniques provided.	Not applicable	No information
Sweden	No information	Segregation. Low-level liquids discharged without treatment. Higher levels: particle filtration or ion exchange or evaporation. Decontamination factors provided.	Not applicable	No information
Switzerland	Not applicable	Centrifugation and evaporation, in conjunction with chemical precipitation. Decontamination factors provided.	Not applicable	Diffusion through membranes with pressure difference.
United Kingdom	Fuel enrichment: segregation, ion exchange and decay storage. Fuel fabrication: management options to reduce discharges or their impact, e.g. ban on use of uranium ore concentrates containing elevated levels.	The management of fuel ponds to minimize corrosion of fuel, including temperature control and anion concentrations in ion exchange plant. Ion exchange and anion removal, sand pressure filtration, various filters. Some decontamination factor information provided.	Vitrification of highly active liquid. Options for low active effluent streams include: pH controls, flocculation and ion exchange, ultrafiltration and encapsulation of residue; evaporation and decay; sand pressure filters, pH control and counterflow with CO ₂ ; incineration.	Very low activity wastes, pH adjustment only. Otherwise decay storage, flocculation and dynasand filtration. Ion-exchange is used where Cs-137 loading warrants. Evaporation of small volume effluents is also undertaken. Decontamination factors provided.

In addition, a number of Contracting Parties reported on recent developments in abatement systems or processes, which are summarised below:

- France (COGEMA La Hague): Recent developments include the replacement of pulsed columns or mixer-settlers by centrifugal extractors in Workshop R4, resulting in lower degradation of solvent and less effluent. There is continuous purification of solvents and treatment by distillation under vacuum.
- Sweden (Ringhals 2): A pilot plant was developed for cross-flow filtration in combination with different absorbers and resins. This plant handles operational effluents, giving rise to a DF >100. It is, however, unable to handle the large volumes of liquid arising during transient shut-down situations.
- Switzerland (Beznau), improvement of the system by use of nanofiltration was planned to be operational in 2007.
- United Kingdom (Sellafield): During this reporting period, a comprehensive review of the control of discharges of Tc-99 was undertaken, which included consideration of abatement options, potential process changes, impact assessment, storage options and costs. As a consequence, an approach to reduce discharges of this nuclide was developed involving the diversion of material to vitrification.

3.2.2 Contracting Parties' Systems Abatement Techniques and BAT

As outlined in the NEA Expert Group on Effluent Release Options (OECD, 2003), it is important to note that BAT relates both to the technologies used and the way in which the nuclear facility is designed, built, maintained, operated and decommissioned. The efficiency of plant processes may be optimised during design and construction but, once a facility is built, there are generally fewer opportunities to change the design of processes such that, for existing plants, there is generally a greater focus on abatement technology. Nevertheless, operational management systems to prevent, eliminate or reduce liquid waste are an important element of the application of BAT. Contracting Parties generally acknowledged that such systems were in place.

Some examples of the general types of abatement techniques available for liquid discharges, identified in the NEA report, are given in Table 4. This table demonstrates that different types of treatment option are available, depending on the physical and chemical properties of the liquid waste stream.

Table 3 demonstrates that the abatement techniques, identified in the NEA report and Table 4, have been employed by Contracting Parties individually or in combination to optimise the removal of particular materials and nuclides from the liquid effluents. Furthermore, it may be seen from Table 3 that there is a significant level of similarity among the systems and abatement processes and techniques applied in nuclear facilities in the Contracting Parties. This level of agreement, together with the national processes in place to implement BAT, provides a strong indication that international best practice – and by extension BAT – is being applied.

Techniques	Application
Chemical precipitation	Chemical treatment of aqueous solution, e.g. application of
	alkali, with resulting co-precipitation of nuclides from solution.
	Filtration and ion exchange to remove particulates from liquid
	effluents. DFs from combined approach typically 10 ³ - 10 ⁶
Physical separation	Insoluble contaminants, e.g. corrosion products and metal
(centrifuging and cross-	oxides. Efficiency depends on particle size.
flow filtration)	
Reverse osmosis, ultra-	Used to remove very low levels of contaminants as final stage
filtration and	before discharge of liquid effluent. Reverse osmosis and
evaporation	ultrafiltration rely on passing relatively clean effluents through a
	sensitive permeable membrane under pressure. Together with
	ambient temperature evaporation, very low discharges result.

 Table 4: Examples of Available Abatement Techniques for Liquid Discharges

 and their Application (OECD, 2003)

Tables 3 and 4 also indicate that combinations of techniques may be and are being used to achieve high decontamination factors. A report of an IAEA Co-ordinated Research Project on Combined Methods for Liquid Radioactive Waste Treatment, published in 2003 (IAEA, 2003), also recognised that the treatment of radioactive liquid effluents often involves a number of steps (such as filtration, precipitation, sorption, ion exchange, evaporation and/or membrane separation). In particular, the value of using combined multi-stage processes for wastes with complex composition (e.g. from reprocessing, secondary wastes from decontamination operations, organic radioactive sludges and spent ion exchange resins) is recognised. The evaporation and fractional condensation treatment of boric acid solutions, resulting from PWR operations in operation at Doel power plant in Belgium, is noted as a particular example. Other examples of multi-stage plants exist in other Contracting Parties.

The inflexibility in the design of older nuclear plants, which were constructed in the 1950s and 1960s when permitted standards for environmental protection were different, is also noted in the NEA report (OECD, 2003). This inflexibility leads to higher abatement costs under operational and decommissioning situations, where recycling and recovery has not been 'designed-in'. Given that both the ALARA and BAT principles include an allowance for economic and social considerations, considerations of cost and feasibility (and projected lifetime of the plant in question) will inevitably influence decisions on what constitutes BAT, particularly in relation to early nuclear facilities that are now drawing to the end of their operational life, or which are undergoing decommissioning.

Over recent years, a lot of work has been devoted on abatement techniques for tritium and carbon 14 in the liquid effluents by OSPAR experts. A relevant IAEA report, published in 2004, demonstrated that techniques are available to remove these radionuclides (IAEA, 2004), although there were also indications that their use may be influenced by the limited scale of operations, high operating costs and that no qualified safe conditioning is available for their disposal. Implementation reports of the Contracting Parties do not mention that any abatement techniques have been implemented for tritium and carbon 14 in the liquid effluents discharged by the nuclear industry (light water reactor NPP and reprocessing plants.

3.3 The Effectiveness of BAT in reducing Liquid Discharges

The following conclusions on the change in discharges from nuclear facilities in the Contracting Parties are included in the First Periodic Evaluation of Progress towards the Objective of the OSPAR Radioactive Substances Strategy (OSPAR, 2006). In that report, discharge trends for nuclear facilities were identified relative to total- α , total- β , Cs-137, Tc-99 and Pu-239 and Pu-240 activity (as appropriate) in the baseline period 1995-2001, using a range of statistical trend analysis techniques⁶.

3.3.1 Belgium

Although there have been reductions in the levels of discharge from the nuclear power sector, in the period 2002-2004 when compared with the baseline average (OSPAR, 2006), these reductions are not statistically significant. There is evidence of reductions in discharge levels from the research and development (R & D) sector, in 2002-2004, which are statistically significant.

3.3.2 Denmark

Discharges from the R & D sector were around, or a little above, the baseline average, but statistical tests suggest that there has not been a statistically significant increase.

3.3.3 France

There is clear evidence of statistically significant reductions in the discharges of total- β and some evidence of reductions in discharges of Cs-137 from the nuclear power sector since the baseline period, in the period 2002-2004 (OSPAR, 2006). There is clear evidence of statistically significant reductions in the total- β and Cs-137 discharges, and some evidence for reductions in total- α and plutonium discharges, from the reprocessing sector. These reductions are considered to result from actions taken to reduce discharges rather than differences in throughput. There is no evidence of reductions in discharges of radioactive substances from the R & D installation at Fontenay-aux-Roses, which has stopped operating since 1995 and only processes decommissioning liquid effluents and radioactive wastes. For the installation at Saclay, there is no evidence of reductions in discharges of total- α , but there is some evidence of reductions in discharges of other radionuclides.

3.3.4 Germany

There is some evidence for a reduction in the total- β and Cs-137 discharges from the nuclear power sector, but they are not statistically significant. The nuclear fuel enrichment and production plants in Germany demonstrate a reduction in total- α discharges of more than an order of magnitude. There is evidence of a reduction in levels of total- β discharges from the R & D sector which is statistically significant.

3.3.5 The Netherlands

Total- β and Cs-137 discharges from the nuclear power sector are an order of magnitude below the baseline average. There is some evidence for reductions in discharges, but these are not statistically significant. There is evidence for a statistically significant reduction in total- β discharges, but not in total- α discharges

⁶ The information on statistical significance has been taken from the First Periodic Evaluation of Progress towards the Objective of the OSPAR Radioactive Substances Strategy (OSPAR 2006). The application of statistical analyses and the choice of baseline elements and times have not been reviewed as part of this assessment. The extent to which these factors might influence the absolute and relative performance of different Contracting Parties is therefore not known.

from the fuel enrichment plant (Almelo). There has been a statistically significant reduction in the levels of discharges of total- α activity from the R & D sector but no statistically significant trend in the discharge of total- β activity from this sector.

3.3.6 Norway

It was not possible to draw any clear conclusions from the data for the R & D sector, except that there is no clear evidence of any increase.

3.3.7 Portugal

It was not possible to draw any conclusions from the data regarding whether there had been any change in discharges from the R & D sector.

3.3.8 Spain

There is clear evidence of statistically significant reductions in total- β discharges and some evidence of reductions in Cs-137 discharges from the nuclear power sector. The total- α discharges from the nuclear fuel production facility (Juzbado) have remained fairly constant.

3.3.9 Sweden

There is evidence of statistically significant reductions in total- β discharges and some evidence of a reduction of Cs-137 discharges (which are nearly an order of magnitude lower than the baseline average) from the nuclear power sector.

3.3.10 Switzerland

There is some evidence for a reduction in the discharges of total- β and Cs-137, from the nuclear power sector. No conclusions could be drawn regarding the trend in total- α discharges from the R & D sector, although there is evidence of a statistically significant reduction in total- β discharges.

3.3.11 United Kingdom

There is no evidence of a statistically significant change in levels of discharges from the nuclear power sector. There was, by 2004 (the end of the reporting period), no evidence of a reduction in the levels of total- α , total- β and Tc-99 discharges from the fuel enrichment and fuel fabrication plants in the UK, though significant reductions have been observed since 2004. The total-ß and Tc-99 discharges from reprocessing for the end of the reporting period (2004) are below the baseline average, giving an indication of a relevant reduction. There was also some fluctuation in the Cs-137 discharges over the period but statistical tests suggest that the reductions are not significant. Discharges of total- α and plutonium isotopes from reprocessing indicate an increase, relative to the baseline. However, a simple comparison gives no indication of a relevant increase. The Student's t-test suggests this increase is statistically significant, while the Mann-Whitney statistic does not confirm this. The levels of discharges in 2002-2004 from the R & D sector are an order of magnitude lower than the average for the baseline period. However, the lower brackets of the baseline are negative such that no clear conclusions could be drawn for the R & D sector, except that there is no evidence of any statistically significant increase.

4 Conclusions and Recommendations

The overall conclusion of this assessment is that the national implementation reports, presented to the RSC, indicate that BAT has been implemented in the Contracting Parties' legal and regulatory systems and that operational systems and techniques are in place to minimize or eliminate radioactive discharges from nuclear facilities. This conclusion is in agreement with that of the RSC, outlined in Section 2.2. A more detailed discussion of these conclusions and recommendations for consideration in the next round of reporting follow.

4.1 Conclusions

7

The Contracting Parties' implementation reports indicate that arrangements are generally in place for implementation of BAT in the national legislation and regulations related to the nuclear industry⁷. However, some Contracting Parties appear to rely on the application of the radiological protection principle of optimisation (or ALARA) alone. Although closely related, the ALARA and BAT principles are focused on different endpoints; ALARA is directly related to dose and health impact, while BAT is focused on the application of processes and technology to control discharge. Application of BAT may be considered to imply a greater emphasis on continuing reviews to determine the 'best' processes than is necessarily the case with ALARA, while ALARA implies a greater allowance for the holistic assessment of risk. However, these observations depend upon the way in which the terms ALARA and BAT are interpreted and applied by the Contracting Parties. There is not always sufficient information to determine whether the continuing review processes, implicit in the BAT principle, are implemented and if they are also part of the ALARA principle, as it is applied in practice.

In their national reports, Contracting Parties generally acknowledged that operational management systems are in place to prevent, eliminate or reduce liquid waste. Such systems are an essential element of the application of BAT. In addition, the abatement techniques, identified in the NEA and IAEA reports, on available liquid effluent options, have been employed by Contracting Parties individually or in combination to remove particular materials and nuclides (except tritium and carbon 14) from the liquid effluents. For tritium and carbon 14 (two nuclides which require particular attention according to Bremen agreement), implementation reports of the Contracting Parties do not mention that any abatement technique has been implemented for tritium and carbon 14 in the liquid effluents discharged by the nuclear industry. There is a significant level of agreement in the processes being employed, which provides a strong indication that international best practice – and by extension BAT – is being applied.

The First Periodic Evaluation of Progress towards the Objective of the OSPAR Radioactive Substances Strategy provides evidence that there have been statistically significant reductions in the discharge of indicator materials and some evidence, for example in relation to the reprocessing sector in France, that these

With the exception of Portugal for which no information was available.

reductions arise from actions taken to reduce discharges rather than differences in throughput.

4.2 Recommendations for next round of reporting

There was not always sufficient information on which to judge the adequacy of national or facility procedures to implement BAT or the way in which BAT considerations are included within operational optimisation. It would be useful if Contracting Parties were encouraged to provide more information regarding regulatory and operational processes in place to review and update technological and other developments. Furthermore, documentation on established management and work practices in place to reduce discharge at source could be improved.

The BAT/BEP indicators in the guidelines are not consistently used. It would be easier to assess and compare Contracting Parties' implementation of BAT if the use these indicators more applied more directly. Their use in summary form could also be encouraged (see for example the report by Sweden). There would also be value considering of whether more guidance should be provided on the interpretation of the BEP concept and associated indicators. The application of normalized discharges in this context may also warrant further consideration.

Experience of techniques or processes being considered or adopted in one Contracting Party may be of relevance to another. There would therefore be value in encouraging greater levels of on-going information exchange on BAT between Contracting Parties. For example, exchange of information regarding the use of codes and handbooks in Germany and the application of environmental targets in Sweden would be potentially valuable. In addition, more detailed information regarding BAT decisions (including information on unsuccessful trials and the reasons why given techniques were not applied in some situations) would be useful. While it is recognised that there may be commercial or other constraints on the exchange of information, valuable information of this sort was included in the UK implementation report (e.g. in relation to Sellafield).

A significant and increasing number of nuclear facilities are undergoing or will shortly undergo decommissioning in many Contracting Parties. There would be value in considering whether there are particular issues relating to the control of discharges during decommissioning, that warrant separate consideration of operational and decommissioning sites (as in the report by the UK)⁸. The processes for considering the implications of BAT with respect to the choice of decontamination and decommissioning techniques will be increasingly relevant in the future. This may include considerations such as: scheduling of waste treatment plant operation and decommissioning operations, and assessments of total and discharge rates.

Many Contracting Parties did not provide information on aerial emissions on the basis that they were not relevant to the marine environment, for example due to distance from the coast. It was also noted that studies had indicated that aerial emissions did not make a significant contribution to concentrations of radionuclides in the marine environment. The context and scope of the request for information

⁸ Ireland believes that this recommendation is not appropriate in a review on the BAT reports. It was argued that it merits discussion at the RSC rather than as part of this report.

on atmospheric emissions should therefore be clarified before the next round of reporting. It may be appropriate to request information on aerial emissions and associated abatement techniques only where they are likely to have a direct impact on liquid discharges. For example, the control of atmospheric emissions of C-14 is a particular example identified in the implementation reports of both France and the UK.

The abatement techniques for tritium and carbon-14 in liquid effluents have also been the subject of discussion and there may be value in reviewing the extent to which there is agreement on the definition of BAT with regard to the abatement of these radionuclides among Contracting Parties, as part of the next round of reporting.

5 References

IAEA (2003), Combined Methods for Liquid Radioactive Waste Treatment, Final Report of a Coordinated Research Project 1997-2001, IAEA-TECDOC-1336, IAEA, Vienna, Austria.

IAEA (2004), Management of Waste Containing Tritium and Carbon-14, Technical Reports Series No. 421, IAEA, Vienna, Austria.

OECD Nuclear Energy Agency (2003), Effluent Release Options from Nuclear Installations, Technical Background and Regulatory Aspects, NEA, Radiation Protection Series, Paris, France.

OSPAR (2003a), Implementation of PARCOM Recommendation 91/4 on Radioactive Discharges. ISBN 1-904426-21-2.

OSPAR (2003b), Radioactive Substances Strategy (Agreement no. 2003-21).

OSPAR (2004), Guidelines for Submission of Information about, and the Assessment of, the Application of BAT in Nuclear Facilities (2004-03) (Annex 1).

OSPAR (2006), First Periodic Evaluation of Progress towards the Objective of the OSPAR Radioactive Substances Strategy, Report No. 302/2006.

6 Annexes

Annex 1: Guidelines for the submission of information about, and assessment of, the application of BAT in nuclear facilities (2004-03)

Annex 2: National Implementation Reports

Annex 3: Summary of site-specific information on abatement techniques

Annex 1: Guidelines for the Submission of Information about, and assessment of, the Application of BAT in Nuclear Facilities (2004 – 03)

Guidelines for the Submission of Information about, and the Assessment of, the Application of BAT in Nuclear Facilities

(Reference number: 2004-03) Replaces agreement 1999-11

GENERAL INFORMATION

INFORMATION TO BE SUBMITTED

Implementation of BAT/BEP in terms of the OSPAR Convention in national legislation/regulation - New legislation since latest implementation round

National regulatory concepts, e.g. what is considered as BAT and how BAT is being applied by each Contracting Party.

Dose constraints/limits for nuclear facilities

Rationale for setting dose constraints/limits

Discharge limits

Rationale for setting discharge limits

Monitoring programmes of environmental concentrations of radionuclides

Environmental norms and standards (other than dose standards for humans, e.g. standards for drinking water)

National authority responsible for supervision etc. of discharges

Nature of inspection and surveillance programmes

INFORMATION TO BE SUBMITTED

- 1.1 Name of site
- **1.2 Type of facility** E.g. power plant (PWR, BWR, GCR, AGR), reprocessing plant, fuel fabrication plant, waste treatment plant, etc., or a combination of these (number of units of each type)
- **1.3 Year for commissioning/licensing/decommissioning** Specified for the main installations within the site
- 1.4 Location
- 1.5 Receiving waters and catchment area, including, where relevant, information on water flow of receiving rivers

1.6 Production

Installed electrical effect and annual electrical output for the last six years (power reactors) Tonnes U processed (reprocessing and fuel fabrication plants) Thermal effect (research reactors) Other relevant data (e.g. for waste treatment plants)

1.7 Other relevant information

SITE-SPECIFIC INFORMATION: 2. DISCHARGES

OBJECTIVE	INFORMATION TO BE SUBMITTED	BAT/BEP INDICATOR
Discharges to the	2.1 System(s) in place to reduce, prevent or	Relevant systems in place (Annex 1).
marine environment,	eliminate discharges of radioactive substances to the	
as well as emissions	marine environment, as well as emissions of radioactive	
of concern to the	substances of concern to the marine environment	
marine environment,	according to the list in Annex 5. In particular, systems	
are limited through	taken into operation during the reporting period (or decided	
application of	to be taken into operation) should be reported as well as	
technical and	changes in management of waste treatment (for example	
managerial practices	use of other waste streams), or processes that reduce	
in accordance with	discharges or emissions should be reported.	
Article 2, 3 (b) (i), as	2.2 Efficiency of <i>abatement</i> systems in terms of,	The decontamination (or abatement) factor or other
well as Appendix 1 on	e.g., retention times and distribution between waste	measure of efficiency of abatement systems (Annex 1).
BAT/BEP of the	streams destined for discharge and waste streams	
OSPAR Convention	destined for disposal according to Annex 5.	
	2.3 Annual liquid discharges:	
	nuclide specific data as given in the OSPAR Annual	
	Report on Liquid Discharges with possible additional	Downward trends in absolute and normalised discharges
	radionuclides from EC reporting requirements	
	• data on beta emitters (excluding tritium), tritium and	Comparison with values of similar installations world-wide,
	alpha emitters (normalised data with regard to net	based on the most recent compilations published by
	electrical output (power reactors) or tonnes U	OSPAR, UNSCEAR or EC
	processed (reprocessing plants and fuel fabrication	
	plants). Factors influencing the normalisation should be	
	reported);	
	Data for at least the last six years should be submitted	
	Data for at least the last six years should be submitted.	
	2.4 Emissions to air of concern for the marine	Downward trends
	environment. Only nuclides with half-life >30 days should	
	be considered, however, as a minimum, information on	
	tritium, C-14 and I-129 should be submitted. Data for at	
	least the last six years.	

SITE-SPECIFIC INFORMATION: 2. DISCHARGES (Continued)

OBJECTIVE	INFORMATION TO BE SUBMITTED	BAT/BEP INDICATOR
Discharges to the	2.5 Systems for quality assurance of:	Relevant and reliable systems are in place
marine environment,	 performance of retention systems etc. 	
as well as emissions	 data management. 	
of concern to the	2.6 Site specific target discharge values.	Relevance of target and closeness to target value
marine environment,	2.7 Any relevant information not covered by the	
are limited through	requirements specified above.	
application of	2.8 Explanations for lack of data or failure to	
technical and	meet BAT/BEP indicators, as well as, when appropriate, a	
managerial practices	description of on-going or planned activities.	
in accordance with		SUMMARY EVALUATION: A BALANCED
Article 2, 3 (b) (i), as		EVALUATION OF THE CP'S ABILITY TO ACHIEVE
well as Appendix 1 on		THE OBJECTIVE, TAKING INTO ACCOUNT
BAT/BEP of the		• The BAT/BED indicators listed above
OSPAR Convention		Data completeness
		Causes for deviations from indicators
		Uncertainties
		Other information

SITE-SPECIFIC INFORMATION : 3. ENVIRONMENTAL IMPACT

OBJECTIVE	INFORMATION TO BE SUBMITTED	BAT/BEP INDICATOR
Marine ecosystems shall be protected, in	3.1 Concentrations of radionuclides of concern in representative samples of water, sediment and fish.	Development of environmental quality criteria is a part of the OSPAR Strategy with Regard to Radioactive
Article 2, 1 (a), of the OSPAR Convention.	Data for at least the last six years.	indicator
		Downward trends
	3.2 Environmental monitoring programme, frequency of sampling, organisms and or other types of	The environmental monitoring programme is relevant, taking sample types, frequencies and the local environment into account
	3.3 Systems for quality assurance of environmental monitoring.	Relevant and reliable systems are in place
	3.4 Any relevant information not covered by the requirements specified above.	
	3.5 Explanations for lack of data or failure to meet BAT/BEP indicators, as well as, when appropriate, a description of on-going or planned activities	
	decemption of on going of plannod douvride.	SUMMARY EVALUATION: A BALANCED EVALUATION OF THE CP'S ABILITY TO ACHIEVE THE OBJECTIVE, TAKING INTO ACCOUNT
		 The BAT/BEP indicators listed above Data completeness Causes for deviations from indicators Uncertainties Other information

SITE-SPECIFIC INFORMATION: 4. RADIATION DOSES TO THE PUBLIC

OBJECTIVE	INFORMATIC	ON TO BE SUBMITTED	BAT/BEP INDICATOR
Human health shall	4.1	Average annual effective dose to individuals	Downward trend
be protected, in	within the criti	ical group(s) via the marine exposure	
accordance with	pathway(s), a	nd caused by current discharges. Data should	
Article 2.1 (a) of	be submitted	for the last six years.	
the OSPAR	4.2	Total exposures (i.e. including those from	The exposure is well within the constraint (or similar),
Convention.	emissions and	d historic discharges/emissions).	provided the constraint gives reasonable allowance for
			other practices so that the annual effective dose from all practices is kept below 1 mSv
	4.3	The definition of the critical group(s), including	The critical group is relevant, taking local conditions and
	information or	n age distribution, size and other relevant	habits, as well as the exposure situation, into account
	information, a	nd on whether the critical group is real	
	(identified) or	hypothetical.	
	4.4	Information on exposure pathway(s)	
	considered, a	nd whether these are treated individually or	
	collectively.		
	4.5	Basis for methodology to estimate doses	The dose estimates are reliable and sufficiently realistic
	(models, actu	al measurements, and verification of data, as	
	appropriate). ⁹		
	4.6	Site-specific factors for significant nuclides.	
	used to estim	ate the dose to critical group members from	
	discharge val	ues.	
	4.7	Site specific target annual effective dose.	Relevance of target and closeness to target value
	4.8	Systems for quality assurance of processes	Relevant and reliable system is in place
	involved in do	ose estimates.	
	4.9	Any relevant information not covered by the	
	requirements	specified above.	
	4.10	Explanations for lack of data or failure to meet	
	BAT/BEP indi	icators, as well as, when appropriate, a	
	description of	on-going or planned activities.	

⁹If this information is general for the nuclear sector and/or part of a statutory programme, this information may be entered under GENERAL INFORMATION

	SUMMARY EVALUATION: A BALANCED EVALUATION OF THE CP'S ABILITY TO ACHIEVE THE OBJECTIVE, TAKING INTO ACCOUNT
	 The BAT/BEP indicators listed above Data completeness Causes for deviations from indicators Uncertainties Other information

Appendix 1

System(s) in place to reduce, prevent or eliminate discharges and their efficiency

Abatement system/	Into op	eration	Efficiency of at	Comments	
Management	(Ye	ear)			
	Existing	Planned	Decontamination Factor	Other measure of efficiency	
Discharges:					
delay tank(s)					
centrifuging					
hydrocyclone					
cross-flow filtration					
ion exchange					
osmosis					
other					
other					
Emissions:					
electrostatic					
precipitation					
cyclone scrubbing					
chemical adsorption					
HEPA filtration					
cryogenics					
other					
other					
Changes in					
management or					
processes:					

Abatement systems¹⁰ and management (according to 2.1 and 2.2).

¹⁰ The examples on abatement techniques are taken from the recently published OECD/NEA report "Effluent release options from nuclear installations".

Annex 2: National Implementation Reports

Unless otherwise specified, the reports listed below are available from the OSPAR website¹¹:

Publication No. 341/2007: Implementation reporting of PARCOM Recommendation 91/4: Belgian Implementation Report, OSPAR Commission 2007.

RSC 07/5/2-E, Implementation Report of PARCOM Recommendation 91/4 on Radioactive Discharges, Presented by Denmark¹².

Publication No. 298/2006: Rapport National Français de mise en œuvre de la Recommandation PARCOM 91/4 sur les rejets radioactifs, Commission OSPAR 2006.

Publication No. 299/2006: Implementation report of PARCOM Recommendation 91/4 by Germany, OSPAR Commission 2006.

Publication No. 2005/238: Report on Information about, and the Assessment of, the Application of BAT in Nuclear Facilities, The Netherlands' Report, OSPAR Commission 2005.

Publication No.300/2006: PARCOM Recommendation 91/4 on Radioactive Discharges: Norway's Report on the Implementation of PARCOM Recommendation 91/4 on Radioactive Discharges, OSPAR Commission 2006.

RSC 07/5/3-E, Implementation Report of PARCOM Recommendation 91/4 on Radioactive Discharges, Presented by Portugal¹³.

Publication No. 342/2007: PARCOM Recommendation 91/4 on Radioactive Discharges: Spanish Implementation Report, OSPAR Commission 2007.

Publication No. 2005/240: Swedish Report on Implementation of PARCOM Recommendation 91/4 on Radioactive Discharges, OSPAR Commission 2005.

Publication No. 301/2006: Implementation Report of PARCOM Recommendation 91/4 by Switzerland, OSPAR Commission 2006.

Publication No. 2005/241: The Application of BAT in UK Nuclear Facilities Report, UK's Report on the Implementation of PARCOM Recommendation 91/4), OSPAR Commission 2005.

¹¹ <u>http://www.ospar.org</u> in the Publications section (as part of the Radioactive Substances Series)

¹² Not available on the OSPAR website.

¹³ Not available on the OSPAR website

Annex 3: Summary of Site-Specific Information on Abatement Techniques

A summary of information compiled from Contracting Parties' implementation reports is summarised on the following table. Empty cells imply that no information was provided. The information for France was derived solely from the Compiled information provided by the Secretariat¹⁴.

¹⁴ The full implementation report was not available in English and review of the report in French was beyond the scope of this assessment.

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
Belgium						
			Segregation of waste waters from			
			different sources; ion-exchange			
			procedures, filtration and		Storage, continuously	
			evaporation of waste waters.		monitored and filtered.	
			Tritium is condensed and		Where action levels are	
			released as liquid fraction. After		exceeded, releases are	
			treatment, effluents are diluted by		passed through HEPA	
			secondary waters and tertiary		filters. Filters and active	
			cooling waters. The concentrate		carbon cartridges (for	
			phase is conditioned as solid		trapping iodine) are	
	Doel	Nuclear Power, PWR	concrete waste.		analysed weekly.	
			Recyclable elements are			
			collected in respective units then			
			filtered, demineralised (anionic,		Continuously monitored;	
			cationic and mixed bed resins)		Effluents from	
			degassed and evaporated.		hydrogenous circuits are	
			Filtrate is stored and residue		sent to storage/decay	
			solidified by cementation. For		tanks. When action	
			non-recyclable effluents, low		levels exceeded releases	
			activities are filtered while higher		are by-passed through	
			activities also subject to		HEPA filters. Filters and	
			evaporation and ion exchange.		active carbon cartridges	
			Effluents are sent to a storage		(for trapping iodine) are	
	Tihange	Nuclear Power, PWR	tank prior to release.		analysed weekly.	
		Research and				
	Fleurus	Development	Liquid wastes sent to Mol-Dessel			

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
			Belgoprocess management of			
			liquid wastes; different types of			
			liquid waste are differentiated.			
			Effluents are treated by			
			sedimentation in decantation			
			tank; the particulate phase is sent			
			to a storage tank, for other			
			sedimentation/decantation			
			mechanisms Evaporation is also			
			used depending on activity			
			Residues are conditioned by			
			cementation and bitumenisation			
		Bososrah and	before storage. Higher level			
	Mal Dessal	Research and	belore storage. Higher level			
	Mol-Dessei	Development	solids are vitriled.		HEPA filtration.	
Denmark						
		Research and				
		Dovelopment				
	Pico	(decommissioning)				
France	RISU	(decommissioning)				
France						
			EDF Strategy: is to reduce the			Set-up of an organization
			production of effluents at the			dedicated to effluent
			source and to optimize the			management, reinforced
			collection and the processing of			during refuelling outages.
			liquid waste. Liquid effluents are			Sharing of good practices
	Belleville	Nuclear Power, PWR	selectively collected according to			between power plants.

Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Gaseous Discharge Treatment	Particular Developments
	Cattenom	Nuclear Power, PWR	4 categories (floor drains, service			Improvement of leakage
	Chinon	Nuclear Power, PWR	effluents, chemical effluents,			detection and identification.
	Chooz	Nuclear Power, PWR	process drains) in order to direct			
	Civaux	Nuclear Power, PWR	them towards the treatment best			
	Dampiere-en-Burly	Nuclear Power, PWR	adapted to their characteristics			
	Fassenheim	Nuclear Power, PWR	(filtration, evaporation,			
	Flamanville	Nuclear Power, PWR	demineralisation)			
	Golfech	Nuclear Power, PWR				
	Gravelines	Nuclear Power, PWR				
	Le Blayais	Nuclear Power, PWR				
	Nogent-sur-Seine	Nuclear Power, PWR				
	Paluel	Nuclear Power, PWR				
	Penly	Nuclear Power, PWR				
	Saint Laurent	Nuclear Power, PWR				
						Continuous approach to
						review technical and
						economic developments
						regarding evaporation,
						concentration and vitrification
						for management of
						discharges. Workshop R4:
						Replacement of pulsed
						columns or mixer-settlers by
						centrifugal extractors,
			evaporation, distillation, filtration			resulting in lower degradation
	La Hague	Reprocessing	and chemical precipitation			of solvent and less effluent.

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
						Continuous purification of
						solvents, concentration by
						evaporation and vitrification.
		Research and				R&D facilities operations
	Fontenay-aux-Roses	Development				stopped in 1995
		Research and				
	Saclay	Development				
Germany						
						Filtration and evaporation of
	Biblis A	Nuclear Power, PWR	Filtration and lon-exchange			waste waters
						Filtration and evaporation of
	Biblis B	Nuclear Power, PWR	Filtration, ion-exchange			waste waters
			Filtration, Ion-exchange,			
			evaporation, combustion,			
	Brokdorf	Nuclear Power, PWR	collection			Permanent monitoring
					Filtration and hold-up	
	Brunsbüttel	Nuclear Power, BWR	Ion-exchange and evaporation		Іоор	
						10% primary cooling content
						permanently routed through
						ion exchange; evaporation
						effective in reducing
						radioactive component of
					Aerosol filters, activated	discharge; clean-up and hold-
	Grafenrheinfeld	Nuclear Power, PWR	lon-exchange, evaporation.		carbon filters	up procedures BAT

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
			Filtration, Ion-exchange within			
			mixed-bed filters, evaporation,			
	Grohnde	Nuclear Power, PWR	decantation, centrifugation			
	Hamm	Nuclear Power, THTR				
	Kahl	Nuclear Power, BWR				
			Ion-exchange, evaporation,		Filtration and hold-up	
	Krümmel	Nuclear Power, BWR	decantation		Іоор	
		Research and				
	Geesthacht	Development	Filtration and Ion-exchange			
					Filtration and hold-up	
	Lingen/Emsland	Nuclear Power, PWR	Ion-exchange and evaporation		Іоор	Permanent monitoring
	Lingen	Nuclear Power, BWR				
	Lingen	Fuel fabrication	No discharge of water		Filtration	
					Filters for aerosols and	
			Ion-exchange, evaporation, silting		iodine; retention of noble	
	Mülheim-Kärlich	Nuclear Power, PWR	filtration, floc precipitation		gases by hold-up line	
						Evaporation with high degree
	Neckarwestheim 1	Nuclear Power, PWR	Evaporation and lon-exchange			of decontamination
						Evaporation with high degree
	Neckarwestheim 2	Nuclear Power, PWR	Evaporation and Ion-exchange			of decontamination
			Filtration, Ion-exchange,			
	Obrigheim	Nuclear Power, PWR	evaporation			
		Í Í	Separation according to	Evaporation:		
			concentration: high activity liquids	10 ⁵ -10 ⁶ .		
			subject to evaporation, low levels	Centrifugation		
	Philippsburg 1	Nuclear Power, BWR	treated by lon-exchange.	1 - 100.	Activated carbon filters	

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
			Chemically polluted stream (e.g.			
			laundry) processed by centrifugal			
			systems (consisting of decanter			
			and separator)			
	Philippsburg 2	Nuclear Power, PWR				
	Rheinsberg	Nuclear Power, PWR				
			Filtration, Ion-exchange,			
	Stade	Nuclear Power, PWR	decantation, evaporation			
			Primary coolant: filtration, lon-			
			exchange, degassing,			
			evaporation. Waste water:			
	Rodenkirchen-		collection, silting filtration,			
	Unterweser	Nuclear Power, PWR	evaporation.			Continuous monitoring
			Filtration, ion-exchange,			
	Würgassen/Beverungen	Nuclear Power, BWR	distillation			
					HEPA filters, off-gas	
					scrubbers (in solid waste	
					incineration plant and	
					reprocessing plant);	
					lodine emissions treated	
			Collection in tanks, where higher		by activated charcoal	
		Research and	than maximum permissible		beds or silver	
		Development	values, decontamination by	10 ⁴	impregnated molecular	
	Karlsruhe	(decommissioning)	evaporation	(evaporation)	sieves.	

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
	Gronau	Fuel enrichment	Filtration and evaporation			
		Fuel fabrication				
	Hanau	(decommissioning)	Unspecified chemical treatment		Filtration (unspecified)	
	Karlstein	Fuel fabrication				
			Central collection tank then			
			discharge to sewerage system (<			
			0.01 ALI for ingestion). Some			Warm layer to reduce fission
		Research and	proportion treated by ion-			and activation product transfer
	HMI Berlin	Development	exchange			into hall atmosphere.
			Delay storage in tanks where		Delayed emission,	
		Research and	appropriate; Evaporation for		aerosol filters, activated	
	Jülich	Development	higher concentrations		carbon filters.	
			Delay storage in tanks where			
		Research and	appropriate; lon-exchange and		Delayed emission,	
		Development	evaporation for higher		aerosol filters, activated	
	Rossendorf	(Decommissioning)	concentrations		carbon filters.	
The Netherlands						
			Ion-exchange (primary coolant			
			water), saturated resin is			
			transferred to solid waste system			Chemicals added to primary
			following storage in tank;	Distillation 10 ⁴		coolant to prevent corrosion.
			distillation of samples from tank	(except for		Monitoring of leakage of fuel
	Borssele	Nuclear Power, PWR	(dependent upon activity);	tritium).		pellets.

Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Gaseous Discharge Treatment	Particular Developments
			filtration of sludge. Residues transferred to solid waste system and cemented.			
			Ion-exchange (primary coolant water), saturated resin is transferred to solid waste system following storage in tank; evaporation of samples from tank (dependent upon activity); filtration of sludge. Sedimentation; residues			
	Doodewaard	Nuclear Power, BWR	and immobilized by cementation.			
	Almelo	Fuel enrichment	Distillation (dependent on activity) with residue transfer to the solid waste system and discharge of distillate to public sewer system (after routine checks on activity); precipitation/sedimentation of wash water from cylinder decontamination. The sediment is filtered and deposited into special vessels. Recovered uranium is reused. Storage for		Not relevant to marine compartment (not directly located at the sea or lake).	

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
			decay of short-lived nuclides			
			Processes and end-of-pipe			
			measures applied: collection of			
			waste in batches, minimization of			
			dilution and mixing; distillation of			
			waste water (exceeding 37			
			kBq/m ³ beta/gamma), ion			
			exchange (primary coolant),			
			storage and decay if possible,			
		Research and	monitoring of leakage of fuel		Not relevant to marine	
	Delft	Development	pellets.		compartment.	
			Separation of radioactive and			
			non-radioactive effluents			
			including sedimentation basins,			
			membrane filtration units,			
			centrifugation of sludges, sludge			
			drying units. Waste water			
			treatment methods: collection and			
		Research and	storage, flocculation and pH			
	Petten	Development	adjustment, processing by			

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
			removal and drying sediments;			
			dried sludges and sediments			
			transferred in barrels to			
			decontamination building and			
			transportation to COVRA.			
Norway						
			Filtration, ion exchange and			
		Research and	evaporation, delay and			
	Halden	Development	sedimentation in tanks.			
			Large storage tanks, delay for			
			short-lived nuclides, filtration and		No emissions to air	
		Research and	purification by ion exchange and		relevant to marine	
	Kjeller	Development	evaporation.		environment.	
Portugal						
		Research and				
	Campus de Sacavém	Development				
Spain						

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
				See separate		
				tables.		
				Filtration 98%		
				for particles;		
			Primary system wastes	ion exchange		
			processed by boric acid recovery	100 for		
			and coolant clean up system	anions 10 for		
			comprising retention tanks filters	Cs Rb 100-	Decay tanks filtration	
			evaporators Slurries are	1000 for	(coarse HEPA and	
			transferred to solid waste system	others: boron	carbon bed) Condensed	
			Condensed effluent are subject to	recovery 2 for	vapour formed in catalytic	
			demineralisation and filtration	Cs Rb 10 for	recombination drained to	
	Almaraz	Nuclear Power, PWR	before decay tank and discharge	other	liquid treatment stream	
	7 initial 2		before decay tank and discharge.	Mixed Ion		
				exchange: 1		
				for noble		
				gases, CS, MO		
				and 10 ioi		
				other nuclides		
				except loaine.		-
				Cationic		The evaporator was replaced
				exchanger 10		in order to achieve higher
			High activity liquids treated by ion	for Cs, Y, Mo.		DFs; management options
			exchange (5 filter demineralisers)	Evaporator	Storage tanks, filtration	including change of ion
			and evaporation. Storage tanks	DF 10° for	for particles and iodine	exchange resins before
			allow choice of discharge volume	liquids except	(course, HEPA and	saturation, use of dry
	Jose Cabrera	Nuclear Power, PWR	and time.	I and B; 10 ⁵	charcoal beds)	decontamination processes

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
				for gases; 10 ³		
				I and B.		
			Primary circuit treated in chemical			
			and volume control system,			
			where gases are removed. lon			
			exchange (removal of fission		Catalytic recombination	
			products) and evaporator		to convert hydrogen to	
			(recover boric acid). Storage and		water is condensed and	
			treatment system. This includes		removed, delay, charcoal	
			hold-up tanks conditioning for		beds and retention for	
			precipitation, control of pH,		decay of noble gases.	Policies to minimize
			evaporation and filtration (latter		Particle filters (coarse	production of wastes and
			not used), condensate		and HEPA) and charcoal	specific actions including
	Trillo	Nuclear Power, PWR	demineralised.		beds.	reuse of liquids.
						Substitution of outdoor pipes
			Floor cleaning water treated by			to reduce likelihood of
			centrifugation (to remove			leakage, cover bottom of
			suspended particles) filtration and			outdoor pond (where effluents
	Juzbado	Fuel fabrication	delay (as required).			stored prior to discharge).
Sweden						

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
			Ion exchange in reactor cleaning			
			circuit; ion exchange filters for			
			condensate, mechanical and ion			
			exchange filters for separation of	Cross-flow		Modernisation of waste
			particulate and ionogenic	filtration DF 1-	Recombiners, sand tanks	treatment systems in 2001,
			contaminants in waste water.	2; ion	for retention of noble	valves, piping and sampling
			Evaporation plant if fuel failure	exchange 2-	gases in process gases,	equipment and computer
	Barsebäk	Nuclear Power, BWR	occurs.	10	carbon and HEPA filters.	controls installed.
						In 2002, R&D pilot plant for
						cross-flow filtration in
			Segregation according to	Particle		combination with different
			chemical composition and	filtration DF 2-		absorbers and resins in
			activity, low-level liquids	4; ion		operation in unit 2. Handles
			discharged without further	exchange DF		operational effluents but
			treatment. Particle filtration or ion	10-50, cross-	Recombiners in unit 1.	cannot handle large volumes
		Nuclear Power, PWR &	exchange; evaporation to recycle	flow filtration	Increased delay and	in shut-down transient
	Ringhals 1-4	BWR	boron in PWR units.	(unit 2) >100	reduction in noble gases.	situation. DF >100
Switzerland						
				Chemical		
				precipitation		Improvement of system by
			Centrifugation and, if necessary,	factor up to		nanofiltration planned to be
	Beznau	Nuclear Power, PWR	chemical precipitation.	100		operational in 2007.
				Evaporation		
			Evaporation. The condensate is	concentration		
			sampled and, if required, treated	reduction 100-		
	Gösgen	Nuclear Power, PWR	with bitumen	10000		

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
				Evaporation		
				concentration		
				reduction		
	Leibstadt	Nuclear Power, BWR	Centrifugation and evaporation	1000-10000		
				Combined		
				reduction by		
	Mühlberg	Nuclear Power, BWR	Centrifugation and ion exchange	factor of 100		
				Concentration		
		Research and	Diffusion through membranes	reduction		
	Paul Scherrer Institute	Development	with pressure difference.	factor of 1000		
United Kingdom						
						Magnox; Pond fuel
						management - corrosion of
						magnox cladding minimised
						by careful pond management;
						low anion concentrations in
						ion exchange plant,
Operational					HEPA, charcoal iodine	temperature control, actions to
Magnox	Chapelcross	Nuclear Power, GCR	2 stage filter system		absorbers	prevent mechanical damage.
						Dungeness A: Magnox
			Ion exchange (including caesium			dissolution plant dissolves
			removal unit) and anion removal,		Candle filters and iodine	inactive debris in carbonic
			sand pressure filtration, ceramic	CRU 60-98%;	bed (emergency use	acid, leaving active residue,
	Dungeness A	Nuclear Power, GCR	filters	SCRU 90%	only), HEPA	sand bed filtration.
			Ion exchange (IONSIV and		Charcoal iodine	
			caesium removal unit) and sand		absorbers (emergency),	
	Oldbury	Nuclear Power, GCR	pressure filtration		HEPA filters on	

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
					contaminated ventilation	
					system	
					Ohamaa kia dia a	
					absorbers (emergency),	
					ceramic filters on	
					blowdown, glass fibre	
			Sand pressure filtration, IONSIV		and HEPA filters on	
	Sizewell A	Nuclear Power, GCR	on pond water.		contaminated ventilation	
					Charcoal iodine	
					absorbers (emergency),	
					sintered metal filters on	
					blowdown and HEPA on	
					contaminated ventilation	
	Wylfa	Nuclear Power, GCR	FilTore, radial filtration device		systems.	
Operational AGR	Dungeness B	Nuclear Power, AGR	-			AGR: Pond water
	Hartlepool	Nuclear Power, AGR				management - pond water is
	Heysham 1	Nuclear Power, AGR	AGR (operational): Particulate			within a closed circuit; leaking
	Heysham 2	Nuclear Power, AGR	and sand pressure filter and ion			fuel elements placed in water-
	Hinkley Point B	Nuclear Power, AGR	exchange resins and mixed bed			tight containers. Treated in
	Hunterstone B	Nuclear Power, AGR	units (Hinkley Point B), chemical			active effluent treatment
	Torness	Nuclear Power, AGR	controls to prevent corrosion.			plants.
Operational PWR	Sizewell B	Nuclear Power, PWR				

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
					lodine charcoal beds,	
					candle filters on blow	
					down, roll filter for shield	
			Sand pressure filter and ion		cooling and HEPA for	
Transitional			exchange - caesium removal unit		contaminated ventilation	
Magnox	Bradwell	Nuclear Power, GCR	(ion exchange) IONSIV		system.	
					Charcoal iodine	
					absorbers, sintered	
					candle assemblies with	
					quartz fibre candles on	
					blowdown stack, roll filter	
					on shield cooling air,	
			Ion exchange (IONSIV, CRU) and		HEAP on contaminated	
	Hinkley Point A	Nuclear Power, GCR	sand pressure filtration		ventilation system.	
					HEPA on contaminated	
Decommissioning					ventilation system, gas	
Magnox	Berkeley	Nuclear Power, GCR	Sand pressure filter		scrubber on incinerator	
			Sand pressure filter, ion			
	Hunterston A	Nuclear Power, GCR	exchange plant		HEPA	
			Sand pressure filter and ion			
			exchange - caesium removal unit			
	Trawsfynydd	Nuclear Power, GCR	(ion exchange) IONSIV		HEPA	

					Gaseous Discharge	
Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Treatment	Particular Developments
			Vitrification of highly active liquid,			
			diversion of future MAC arisings			
			to vitrification, removal of nuclides			
			in EARP and encapsulation;			Review of options for dealing
			treatment of low active streams in			with Tc-99 arising from
			EARP (pH and floccation and ion			treatment of Medium Active
			exchange, ultrafiltration and			Concentrate (diversion to
			encapsulation of residue), SETP			vitrification where possible).
			(evaporation and decay) and			This will also reduce
			SIXEP (regenerable sand			discharges of Sr-90 and Cs-
			pressure filters, pH and			137. C-14 scrubbers of
			counterflow with CO2; ion			atmospheric emissions with
Other Nuclear			exchange columns); treatment of	EARP: DF >		increase in liquid discharge;
Fuel Cycle			organic solvent in STP,	1000 for alpha		removal of iodine by
Facilities	Sellafield	Reprocessing	incineration of lubricating oil.	and > 10 beta		precipitation with iron salts
	Calder Hall	Nuclear Power, GCR	Included in Sellafield discharge			
			Segregation, ion exchange and			
	Capenhurst	Fuel enrichment	decay storage			
						Ban on processing uranium
						ore concentrates containing
						above average levels of
	Springfields	Fuel fabrication	Recirculation to remove uranium			thorium.
			Filtration, ion-exchange where			
			Cs-137 loading warrants(e.g.			Construction of Low Level
		Research and	from sodium coolant destruction			Liquid Effluent Treatment
Research and		Development	process, which commenced			Plant - for monitoring prior to
Development	Dounreay	(decommissioning)	during the reporting period);			discharge.

Country	Name	Type of Facility	Liquid Effluent Treatment	Effectiveness	Gaseous Discharge Treatment	Particular Developments
			evaporation of small effluents			
			from small-scale operations.			
			Low active liquors held in delay			
			tanks; treatment involves			
			flocculation (precipitation of alpha			
			and beta activity) followed by			
			dynasand filters for removal of			
			particulates. The filtrate is			
			sampled for suitability for	Alpha removal		
			discharge. Slurries are removed	DF 10-20;		
		Research and	to a settling tank prior to	Beta removal		
	Harwell	Development	cementation.	3-5		
		Research and				
	Windscale	Development	Filtration			
		Research and	No treatment except pH			
	Winfrith	Development	adjustment			

New Court 48 Carey Street London WC2A 2JQ United Kingdom t: +44 (0)20 7430 5200 f: +44 (0)20 7430 5225 e: secretariat@ospar.org www.ospar.org

OSPAR's vision is of a clean, healthy and biologically diverse North-East Atlantic used sustainably

ISBN 978-1-905859-90-0 Publication Number: 351/2008

© OSPAR Commission, 2008. Permission may be granted by the publishers for the report to be wholly or partly reproduced in publications provided that the source of the extract is clearly indicated.

© Commission OSPAR, 2008. La reproduction de tout ou partie de ce rapport dans une publication peut être autorisée par l'Editeur, sous réserve que l'origine de l'extrait soit clairement mentionnée.